
CHAPTER

SIXTEEN

SYNCHRONIZING RESOURCES AND CELL

This chapter describes Synchronizing Resources (SR) and Cell. These two sys-

tems use mechanisms similar to remote procedure calls of Distributed Processes

and Ada. They extend these concepts by providing new mechanisms for schedul-

ing communications.

Two of the important dimensions of interprocess communication are the size

of the communication channel and the synchronization required of communi-

cators. To communicating processes, the interprocess communication channels

appear to be either of bounded size (bu�ered communication) or of unbounded

size (unbu�ered communication). Communication either requires the simulta-

neous attention of all communicators (synchronous communication) or allows

the sending and receiving of messages to be temporally disjoint (asynchronous,

send-and-forget messages). All explicit process systems choose some point in

this two-by-two space. Bu�ered, asynchronous communication is shared stor-

age|for example, Shared Variables. In Shared Variables, the size of the variable

is the size of the communication channel. Processes freely read and write the

variable, independent of the status of other processes. Message-based systems

use unbu�ered, asynchronous communication. Examples of such systems include

PLITS and Actors. Procedure-call systems, such as Distributed Processes and

CSP, use bu�ered, synchronous communication. In synchronous communication,

245

246 languages

both processes must attend to the communication; a process never sends a second

message until after the �rst has been received.*

The language Synchronizing Resources synthesizes these three possibilities.

SR supports both synchronous and asynchronous communication. Additionally,

the structure of SR programs allows sharing storage between certain processes. In

some sense, SR merges a multiprocessing system into a distributed environment.

SR is a language designed for operating systems implementation. One im-

portant problem of systems development is scheduling. To simplify scheduling,

SR has a priority mechanism built into its communication primitives.

SR is the work of Gregory Andrews at the University of Arizona.y He has

implemented SR on UNIX-based PDP-11 systems.

Synchronizing Resources extends the ability of a called process to schedule

its interactions by priorities. Cell, a system proposed by Abraham Silberschatz

of The University of Texas, combines SR's priority mechanisms with powerful

internal queueing structures to provide the programmer with even greater control

of the scheduling of process activities.

16-1 SYNCHRONIZING RESOURCES

Synchronizing Resources distinguishes between processes and resources. A proc-

ess in SR corresponds to our familiar notion of process|program and storage,

capable of executing concurrently with other processes. A resource is a collection

of processes that can share storage, their shared storage, and an initialization

program for the shared storage. Each process is in exactly one resource; each

resource has at least one process.

Processes communicate either through the common storage of a resource or

by requests to named entries in other processes. These requests can be either syn-

chronous requests (calls) or asynchronous requests (sends). Entries are declared

in the de�ne command. This declaration can restrict an entry to receive only

synchronous communications (call) or asynchronous communications (send). We

illustrate the structure of an SR program with the skeleton of a program for a

* No one designs a model based on unbu�ered, synchronous communication. Unbu�ered

systems are helpful in that they hold unprocessed messages. Synchronization implies that,

from the point of view of the sender, each message dispatch is accompanied by an immediate

reception. In an unbu�ered, synchronous system there are no unprocessed messages to take

advantage of the unbounded size of the communication channel.
y This section is based on the preliminary SR design described in \Synchronizing Resources"

[Andrews 81a]. SR has since been modi�ed and extended, principally by the addition of an

import/export mechanism, named processes, and minor syntactic improvements. These changes

are described in Andrews's 1982 article on the mechanisms, design, and implementation of SR

[Andrews 82].

synchronizing resources and cell 247

bounded bu�er.* Entry names declared in a de�ne command are visible outside

the resource. In resource stack, the entry pop is called stack.pop.y

type item = : : : ; - - declaration of the items stored by the bu�er

resource producer resource; - - the producer and consumer resources

process producer;
...

resource consumer resource;

process consumer;
...

resource bu�er;

de�ne

insert, - - entry name for producers

remove fcallg; - - entry name for consumers. This entry

receives only synchronous calls.

const bufsize = 20; - - a bu�er of size 20

var

�rst, last : integer;

queue : array [0..bufsize � 1] of item;

- - initialization statements

process intake;

- - program for process intake

: : : in (m: item) : : :
...

end intake

process outplace;

- - program for process outplace

: : : in (var m: item) : : :
...

end outplace

end bu�er

As we mentioned above, requests can be either synchronous or asynchronous.

One invokes a synchronous request with the command call and an asynchronous

* In those cases where the description of SR [Andrews 81a] omits the details of the declar-

ative structure of the language, we have improvised, using a Pascal-like syntax.
y An entry that is the only entry in the program with a given name can be referenced without

mentioning its resource. For example, if there are no other push entries in the program, the

entry can simply be called push.

248 languages

request with send. Call blocks the calling process until its call is handled. Since

the calling and called processes are synchronized, a call request allows the called

process to reply to the caller. Send transmits the request to the entry and allows

the sending process to continue. Each takes the syntactic form of a procedure

call. Particular entries may be restricted to receiving only call or send requests.

The example above has the remove entry restricted to calls.

A program accepts requests with an in command. This command takes a

sequence of guarded clauses (Section 2-2). The guards of the in command can

reference the parameters of the request and sort calls by priority. An in command

has the form

in <operation command> [] � � � [] <operation command> ni

where an <operation command> is

<entry name> <formal parameter list>

and <boolean expression>

by <arithmetic expression> !

<statement list>.

The in command is a guarded input command. The boolean expression is

the guard. The use of a guard (and <boolean expression>) and a priority (by

<arithmetic expression>) are optional. This use of and as a keyword is something

of a pun. This and joins the entry name and the guard. The guard is a boolean

expression and can contain ands of its own, whose meaning is logical conjunction.

The <arithmetic expression> is an integer expression; SR does not support a

primitive oating type.

The operation command does not accept a message from a clause with a false

guard. If there are several messages on an entry, then these messages are ordered

by their priority|their value under the by expression. The smallest value has

the highest priority. In our other systems with guarded input commands (such

as Distributed Processes, CSP, and Ada) the guards refer to the internal state of

the receiving process. For example, the input entry of a bu�er has a false guard

when the bu�er is full. In SR, the guard and priority expressions can examine the

parameters of the request. For example, an empty taxicab process that wants to

respond to the closest (Cartesian-closest) calling customer has the in statement

in customer (cust x, cust y: integer) and cab free

by (cab x � cust x) * (cab x � cust x) +

(cab y � cust y) * (cab y � cust y) !

- - code for responding to customer call

where cab x, cab y, cust x and cust y are the Cartesian coordinates of the cab

and the requesting customer, respectively.

synchronizing resources and cell 249

SR has four sequential programming constructs: (1) a null statement skip;

(2) assignment; (3) a guarded alternative statement of the form if <guarded com-

mand> [] � � � [] <guarded command> �; and (4) a guarded repetitive command

of the form do <guarded command> [] <guarded command> [] : : : od. Guarded

commands are syntactically identical to Dijkstra's original guarded commands:

<boolean expression> ! <statement list>. The alternative command executes

the statement list of one of its clauses with a true guard. If the guards of an alter-

native command are all false, the process terminates abnormally. The repetitive

command repeatedly executes the statement list of a clause with a true guard

until all guards are false. It then terminates. SR does not have procedures or func-

tions|processes, though not recursive, are meant to serve instead of procedures.

The program for the bounded bu�er resource is as follows:

resource bu�er;

de�ne

insert,

remove fcallg;

const bufsize = 20;

var

�rst : integer;

last : integer;

queue : array [0..bufsize � 1] of item;

�rst := 0; - - initialization statements

last := 0;

process intake;

do true !

in insert (m: item)

and not (((last + 1) mod bufsize) = �rst) !

last := (last + 1) mod bufsize;

queue[last] := m

ni

od

end intake

process outplace;

do true !

in remove (var m: item) - - Entry call parameters can be either

input parameters (no keyword) or

input-output parameters (keyword

var).
and last =/ �rst !

�rst := (�rst + 1) mod bufsize

250 languages

m := queue[�rst];

ni

od

end outplace

end bu�er

This program does not treat requests as permutations of producer and con-

sumer calls. Instead, a process is devoted to producers and another to consumers.

Both processes run concurrently when there are both empty slots and available

messages. These processes communicate through their shared storage. Processes

intake and outplace interact in only one place| each tests in its input guard

whether the other has gotten too far behind, leaving it with a full (or empty)

bu�er. We do not synchronize the shared-variable updates because every shared

variable is set by only one process (and read by the other). We repeat the theme

of single-writer variables in other examples.

Scheduling Requests An SR process has some control over the order in which

it handles requests. The guards on input commands can reference not only the

internal state of the process, but also the values of the parameters of the message.

The priority mechanism can sort messages by \importance." The major limita-

tion of the guard and priority mechanisms is the absence of functions. The guard

and priority expressions must therefore be simple and loop-free. An important

consequence of this simplicity is that their evaluation must terminate.

In addition to being able to sort requests by priority, a process can access the

size of its request queue. The expression ?entryname is the number of requests

waiting on entry entryname.

Readers-writers Our next example is a program for the fair control of a

readers-writers resource. This program uses both memory sharing within a re-

source and priority examination in guarded commands to ensure fairness. The

readers-writers problem requires a manager that gives access to a resource to two

di�erent classes of users|readers and writers. Many readers can simultaneously

access the resource, but writers must have exclusive control. Of course, a solu-

tion to the readers-writers problem is better if it precludes starving readers or

writers. This solution not only allows all readers and writers to progress, but also

serves readers and writers fairly|waiting writers keep all newly arrived readers

from commencing reading; writers are served in the order that they request the

resource.

This fair discipline echoes the linearity of timing and clocks. We ensure a

fair queue with a form of clock. The manager resource has two processes, a

time stamp process and a guardian process.* Processes that want the resource

call process time stamp and get a numbered \ticket." One can think of this

* We discuss timestamps and their applications in distributed databases in Section 17-1.

synchronizing resources and cell 251

ticket as being stamped with the time of the request. After obtaining a ticket,

the potential reader or writer calls process guardian to wait for service. Guardian

serves callers (roughly) in the order of their ticket numbers, except that the start

of a reading cycle entitles all readers with tickets before the current time to read.

resource manager;

type request = (wanttoread, wanttowrite);

de�ne

stamp fcallg; - - entry for ticket stamping

enter fcallg; - - entry for the resource

exit fsendg; - - When a process is through with the resource, it

sends a message on the \exit" entry.
var

num waiting readers, num waiting writers: integer;

- - the number of readers and writers waiting to

access the resource

clock: integer - - the guardian's timestamp counter

num waiting readers := 0; - - initialization of common storage

num waiting writers := 0;

clock := 0;

process time stamp;

do true !

in stamp (req: request; var ticket: integer) !

if

req = wanttoread !

num waiting readers := num waiting readers + 1

[]

req = wanttowrite !

num waiting writers := num waiting writers + 1;

�

clock := clock + 1;

ticket := clock;

ni

od

end process

process guardian

var

num readers : integer;

num writers : integer;

- - the number of readers and writers

currently using the resource

num readers done : integer;

num writers done : integer;

- - the number of readers and writers

�nished with the resource

252 languages

last user : request;

switch time : integer - - timestamp of the last transition

between readers and writers

num readers := 0;

num writers := 0;

num readers done := 0;

num writers done := 0;

switch time := 0;

last user := wanttoread ; - - an arbitrary choice

do true !

in enter (req: request; ticket: integer)

and

(num writers = 0) and - - conditions under which

a reader can read|no

writer writing and no

writer waiting too long

((req = wanttoread) and

(last user = wanttowrite) or

(ticket � switch time)))

or

((req = wanttowrite) and - - conditions under which

a writer can write|no

reader reading and no

reader waiting too long

(num readers = 0) and

((num waiting readers � num readers done = 0) or

(last user = wanttoread)))

by ticket !

if

not (last user = req) !

last user := req;

switch time := clock

[]

last user = req ! skip

�;

if

req = wanttoread !

num readers:= num readers + 1

[]

req = wanttowrite !

num writers := num writers + 1

�

[]

synchronizing resources and cell 253

exit (req: request) !

if

req = wanttoread !

num readers := num readers � 1;

num done readers := num done readers + 1;

[]

req = wanttowrite !

num writers := num writers � 1;

num done writers := num done writers + 1;

�

ni

od

end guardian

end manager

Shared variables num waiting readers, num waiting writers, and clock do not re-

quire mutual exclusion because they are set only by process time stamp. This

process serves as a \secretary" for process guardian, �ltering and ordering re-

quests before they reach the \executive's" desk. (Of course, the timestamp

counter overows if the manager is used too long.)

To obtain read access to the resource, a process executes

call manager.stamp (wanttoread, my ticket);

call manager.enter (wanttoread, my ticket);

- - access the resource

send manager.exit (wanttoread);

Variable my ticket is of type integer. The protocol for a writer is identical except

that it requests wanttowrite.

Initialization, Fairness, and Termination An SR program starts by execut-

ing the initialization statement of each resource. Each process begins computing

after initialization. SR enforces a weak form of fairness on process scheduling:

if a process does not block in a call or in statement then it eventually gets to

execute.

A program terminates when all its constituent processes terminate or are

blocked. A process reaching the end of its program terminates normally ; ab-

normal termination results when all the guards of an alternative command are

false.

Tra�c lights A family of resources is a set of resources that share the same

code. An SR program declares a family of resources by providing a subscripted

range declaration for the resource. Similarly, a family of processes can be declared

inside a resource. For example, the SR program skeleton

254 languages

type intersection = 1 .. maxlight;

resource light [intersection];

type direction = (north, south, east, west) ;
...

process arrival sensor [direction];
...

declares maxlight resources of type light, each with four processes of type ar-

rival sensor. Within each resource, myresource is the resource index; within each

process, myprocess is the process index.

Our �nal example SR program is a tra�c light control system. The city

pictured in Figure 16-1 is installing a distributed system to control the tra�c

lights at each of the numbered intersections. Each intersection has a tra�c light

and eight road-sensors. Figure 16-2 shows an intersection. The tra�c light has

two sets of lights, east-west lights and north-south lights. Each set of lights can

be red, yellow, or green. Sensors are embedded in the roadway. They detect

and signal the passing of vehicles. The two kinds of sensors, arrival sensors and

departure sensors, respectively register cars arriving at and departing from the

intersection. For the sake of simplicity, we assume that the roads are all two

lanes (one lane in each direction) and that a vehicle reaching an intersection can

turn in any direction. The tra�c ow is such that a car exiting over a departure

sensor is likely (but not certain) to continue to the next controlled intersection

in that direction.

When the intersection is busy, we want the tra�c lights to cycle in the

obvious fashion, letting tra�c through �rst in one direction, then the other.

Optimally, when the intersection is not busy the light should go to red-red. This

Figure 16-1 City lights.

synchronizing resources and cell 255

Figure 16-2 An intersection.

allows the light to turn green immediately for the next car, without requiring

a yellow delay. To improve tra�c ow at quiet times we send a message from

the departure sensors to the next controller. This message informs the controller

that there is probably a car coming. If the controller is in a red-red state, it

turns the signal green for that car, allowing it to proceed without stopping. If

the controller is busy handling real tra�c, it ignores the message.

Our tra�c light resource consists of ten processes. It has four arrival sensors,

four departure sensors, a controller, and a secretary. Arrival sensors detect the

arrival of a car at the intersection. Each approach to the intersection has an ar-

rival sensor. Departure sensors register the direction of car departure. Each exit of

the intersection has a departure sensor. Process controller coordinates the tra�c

information and turns the lights on and o�, and process secretary receives mes-

sages from other intersections about approaching cars. Sensors recognize passing

cars as calls over the a sense and d sense entries; secretaries receive messages

over the approaching entry. The skeleton of our program is as follows:

type intersection = 1 .. maxlight;

resource light [intersection];

type

direction = (north, south, east, west);

light direction = (ns, ew);

- - shared storage declarations and initializations

de�ne

a sense, d sense [direction] fcallg,

approaching fsendg;

256 languages

process controller;
...

process secretary;
...

process arrival sensor [direction];
...

process departure sensor [direction];
...

Processes controller, secretary, and arrival sensors communicate by sharing stor-

age. The sensors write variables ns arriving and ew arriving when a car ar-

rives from one of those directions; the secretary writes variables ns coming and

ew coming when it receives messages about approaching cars. Array goingto

stores the intersection to which each departure sensor leads.

type goingrec =

record

inter : intersection;

ldir : light direction

end;

var - - common storage declarations and initializations

ns arriving, ew arriving : boolean;

ns coming, ew coming : boolean;

goingto : array [direction] of goingrec;

ns arriving := false;

ew arriving := false;

ns coming := false;

ew coming := false;

- - initialization of the \goingto" array

An arrival sensor reads its next call from its entry and marks the corresponding

arriving variable. The entries in this example are not subscripted because each

entry is implemented by exactly one process.

process arrival sensor [direction];

do true !

in a sense !

if

(myprocess = east) or (myprocess = west) !

ew arriving := true

[]

synchronizing resources and cell 257

(myprocess = north) or (myprocess = south) !

ns arriving := true

�

ni

od

end arrival sensor;

Departure sensors accept interrupts from the sensor device and send messages

to the neighboring intersections.

process departure sensor [direction];

do true !

in d sense !

send light[goingto[myprocess].inter].approaching

(goingto[myprocess].ldir)

ni

od

end departure sensor;

When the secretary receives a message from another intersection it marks the

appropriate coming variable.

process secretary;

do true !

in approaching (dir: direction) !

if

(dir = east) or (dir = west) !

ew coming := true

[]

(dir = north) or (dir = south) !

ns coming := true

�

ni

od

end secretary;

The program gives priority to cars that have arrived at a sensor. It allows

no more than carmax cars through in a particular direction if cars are waiting

in the other direction. If there are no \arrived" cars, the light turns for \com-

ing" cars. The light turns yellow for yellow time seconds and the system allows

car delay seconds for each car to pass over the arrival sensors. We hypothesize

two procedures, delay and signal. Delay(n) suspends a calling process for n sec-

onds; signal(direction,color) turns the lights for the given direction to the given

color.

258 languages

process controller;

const

carmax = 20;

yellow time = 15;

car delay = 5;

type

color = (green, yellow, red);

var

ew green, ns green : boolean;

carcount : integer;

ew green:= false;

ns green := false;

signal (ew, red);

signal (ns, red);

carcount := carmax;

do

ew green !

if

(ew arriving and

((carcount > 0) or not ns arriving)) or

(not ew arriving and not ns arriving

and ew coming and not ns coming) !

ew arriving := false;

ew coming := false;

carcount := carcount � 1;

delay (car delay)

[]

(ns arriving and

((carcount � 0) or not ew arriving)) or

(not ew arriving and not ns arriving

and ns coming and not ew coming) !

signal (ew, yellow);

delay (yellow time);

signal (ew, red);

ew green := false;

signal (ns, green);

ns green := true;

carcount := carmax;

ns coming := false;

delay (car delay)

[]

synchronizing resources and cell 259

Table 16-1 Green east-west successor states

carcount ew com. ns com. ew arr. ew arr. :ew arr. :ew arr.

>0 ^ns arr. ^:ns arr. ^ns arr. ^:ns arr.

true true true �c �c NS red-red

true true false �c �c NS �c

true false true �c �c NS NS

true false false �c �c NS red-red

false true true NS �c NS red-red

false true false NS �c NS �c

false false true NS �c NS NS

false false false NS �c NS red-red

Key: �c Decrement carcount and leave east-west green.

NS Turn east-west red and north-south green.

red-red Turn both lights red.

not ew arriving and not ns arriving and

(ew coming = ns coming) !

signal (ew, yellow);

delay (yellow time);

signal (ew, red);

ew green := false;

carcount := carmax;

ew coming := false;

ns coming := false;

�

[]

ns green ! - - a similar program for ns green
...

[]

not ew green and not ns green !

if

ew arriving or (not ns arriving and ew coming) !

signal (ew,green);

ew green := true;

ew arriving := false;

ew coming := false;

carcount := carmax;

delay (car delay)

260 languages

Figure 16-3 The tra�c light state machine.

[]

ns arriving or (not ew arriving and ns coming) !
...

- - similarly for north-south

[]

not ew arriving and not ns arriving

and not ew coming and not ns coming !

skip

�

od

end controller

end light

synchronizing resources and cell 261

The convoluted logic used above is really a selection of a point in a state

space. This selection is based on the current settings of the arriving, coming, and

carcount variables. Figure 16-3 shows the program's three-state automaton [aug-

mented by the register carcount (c)]. Each arc of this automaton is a disjunction

of conjunctions of the arriving and coming variables, and the value of carcount.

Table 16-1 summarizes the successor-state relationship for a green light shining

in the east-west direction. The boolean expressions in the alternative commands

of the program are minimizations on this table. This control structure can also

be achieved using table-lookup techniques or by assigning numeric values to the

arriving and coming variables and computing relative priorities.

16-2 CELL

Cell is a model-language hybrid; a proposal to extend other languages with a

few additional constructs for multiple-process communication and control. Cell's

theme is the e�ective and e�cient synchronization of processes. To support syn-

chronization, Cell provides processes that are proper objects and several priority

mechanisms for scheduling process requests.

A Cell program is a �nite (but not �xed) set of concurrent processes. The

processes are called, not surprisingly, cells. A cell is a structured data type; the

programmer describes the cell class and can create speci�c instances of that class.

Thus, the declaration*

type register = cell (initial: in integer);

var reg: integer;

begin

reg := initial;

while true do

select

accept set (setval: in integer) do

reg := setval;

end;

or

accept get (getval: out integer) do

getval := reg;

end;

end;

end.

declares a class of objects called registers. A register responds to two di�erent

kinds of requests, set and get. Set stores a value in the register; get retrieves the

* Following Silberschatz [Silberschatz 80], we use a form of extended Pascal/Ada for our

Cell programs.

262 languages

last value stored. This declaration does not create any registers. A program or a

cell that declares

var memory: array [1 .. 100] of register;

would have (potentially) 100 cells of type register, each named by an element of

array memory. This declaration still does not allocate storage. Instead, when the

program executes the statement

init memory[5](7);

a new process (cell) is created, the value of initial in that process is set to 7, that

process is set running, and the �fth element of array memory is set to that new

process. Init is a forking statement; the creating cell continues processing after

executing init.

Cell processes are objects. Both init and (recursive) lexical elaboration can

create new cells. Cell names are of a data type called identity; variables can range

over this data type. Any syntactic expression that uses the name of a cell can

use a variable of this type. The initial parameter of the register is an example

of a cell's permanent parameters. Cells can have both in and out permanent

parameters. In parameters are passed to the cell at its creation. The cell returns

out parameters when it terminates.

A simple example of using cell names as values and input and output param-

eters is an accountant cell. A certain operating system charges jobs for printing

by the line and plotting by the vector. These charges vary by the time of day

and class of user; for any job these charges are the charges in e�ect when the

job starts. When a job is created it is given the name of an accountant cell. The

job routes all its printing and plotting requests through this cell. When the job

informs the accountant cell that it is done, the accountant cell returns the total

charges to the operating system.

type accountant = cell

(print : in printer cell;

print cost : in integer;

plot : in plot cell;

plot cost : in integer;

total charges : out integer);

var done: boolean; - - Done is set when the job is through.

begin

total charges := 0;

done := false;

repeat

select

accept please print (ln: in line) do

synchronizing resources and cell 263

print.act (ln);

total charges := total charges + print cost;

end;

or

accept please plot (vec: in vector) do

plot.act (vec);

total charges := total charges + plot cost;

end;

or

accept �nished do

done := true;

end;

end;

until done;

end.

The operating system, having the declarations

type

prt = cell : : : ; - - printer cell description

plt = cell : : : ; - - plotter cell description

acct = cell : : : ; - - accountant cell description, above

var

printer : prt;

plotter : plt;

accountant : acct;

print price, plot price : integer;

charges : integer;

could execute the statements

init printer : : : ;

init plotter : : : ;

print price := : : : ;

plot price := : : : ;

init accountant (printer, print price, plotter, plot price, charges);

to create an accountant cell. It would pass the name of this cell to the job that

needs to print and plot. When the accountant cell terminates (after receiving a

�nish call from its client) it sets charges to the total charges due.

Scheduling The most signi�cant features of Cell are those that order process

scheduling. As should be clear from the preceding examples, Cell bases its com-

munication mechanism on Ada's select and accept statements. Processes direct

264 languages

requests at the entries of other cells. Cell extends the scheduling mechanisms of

Ada in four ways: (1) accept statements can restrict requests to be from only a

speci�c cell, (2) a queueing mechanism allows cells to delay calls after they have

been accepted, (3) the program can specify a partial order on selection from en-

try and waiting queues, and (4) like SR, requests waiting in delay queues can be

ordered by priority. Cell speci�es that there is no shared storage between proc-

esses and that parameter passing is by value/result. Other than these changes,

Cell is a strict generalization of Ada.

The �rst extension, the from clause, makes communication between calling

and called cells more symmetric. An accept clause of the form

accept <entryname> (<parameters>) from <cellname> do : : :

accepts calls from only the named cell. This is useful for server-user dialogues|

cells that serve several other cells, but whose communication requires a conver-

sation, not just a single request/response exchange. For example, a printer cell

would �rst accept input from any cell and then restrict its input to be from that

cell only. This restriction would continue until the end of the printing job. Since

the identity of the calling cell is important information to the called cell, the

system provides the primitive function caller, which (in the scope of an accept

statement) yields the name of the calling cell.

The second extension introduces the await primitive. An await statement

has the form await <boolean-expression>. Await statements occur only in the

bodies of accept statements that are within select statements. If a cell executing

the body of an accept statement reaches an await statement, it evaluates the

boolean-expression. If the expression is true, it continues processing. If it is false

the rendezvous is delayed. The system creates an activation record (closure)

describing the point of program execution, the request's parameters, and the

local variables of the accept clause. It adds this record to a set associated with

the await statement. (Unlike the accept queue, the await set is not ordered.) The

cell then executes the program after the select statement. The calling process

remains blocked. Silberschatz credits the idea for a construct similar to await to

Kessels [Kessels 77].

What unblocks the calling process? The select statement treats requests

waiting at await statements within its scope as if they were accept clauses. If

select chooses an await statement then its processing continues after the await

statement. Just as accept clauses can have boolean guards, the guard of the await

statement is its original boolean expression. Since this guard can refer to the

local parameters of the accept statement, the system must potentially evaluate

each element of the await set in search of one whose local parameters make the

guard true. (Silberschatz hypothesizes that in practice, few await guards would

mention local parameters, and that most of these would be used only for priority

scheduling.) If we think of the select statement as also accepting clauses from

await sets, then the program

synchronizing resources and cell 265

select

L1: accept queue1 (<queue1 parameters>) do

<statements1;1>

M1: await (<boolean expression1>);

<statements1;2>

or

L2: accept queue2 (<queue2 parameters>) do

<statements2;1>

M2: await (<boolean expression2>);

<statements2;2>

end;

is equivalent, from the point of view of a call blocked in an await statement, to

the program

select

L1: accept queue1 (<queue1 parameters>) do

<statements1;1> : : :

or

L2: accept queue2 (<queue2 parameters>) do

<statements2;1> : : :

or

M1: when <boolean expression1> {> await M1 accept do

<statements1;2>

or

M2: when <boolean expression2> {> await M2 accept do

<statements2;2>

end;

That is, the await statement tries to \continue where it left o�."

We use the Exchange Functions model (Chapter 7) to illustrate the await

statement. Briey, Exchange Functions supports synchronous and immediate

bidirectional communication. Communication is directed over channels. Ex-

change Functions has three communication operations, X, XM, and XR. A call

to X on a channel communicates with any other call to that channel. Calls to

XM do not communicate with other calls to XM. Calls to XR communicate only

if another communication is waiting. If no other communication is ready for an

XR, the input value is returned to the task that calls the XR. The channel's task

is to pair possible communicators. We assume that this channel passes values of

type item. A cell that does channel pairing is as follows:

type channel = cell; - - no input or output parameters

var

Xwaiting : boolean; - - Is an X call waiting?

266 languages

XMwaiting : boolean; - - Is an XM call waiting?

AnswerReady : boolean; - - Is it time to wake a waiting call?

ansval : item;

begin

AnswerReady := false;

Xwaiting := false;

XMwaiting := false;

while true do

select

when not AnswerReady !

accept X (inval: in item; outval: out item) do

if Xwaiting or XMwaiting then

begin

outval := ansval;

ansval := inval;

AnswerReady := true;

end;

else

begin

Xwaiting := true;

await (AnswerReady);

outval := ansval;

AnswerReady := false;

Xwaiting := false;

end;

end; - - accept X

or - - Never match an XM with an XM.

when not AnswerReady and not XMwaiting !

accept XM (inval: in item; outval: out item) do

if Xwaiting then

begin

outval := ansval;

ansval := inval;

AnswerReady := true;

end;

else

begin

XMwaiting := true;

await (AnswerReady);

outval := ansval;

AnswerReady := false;

synchronizing resources and cell 267

XMwaiting := false;

end;

end; - - accept XM

or

when not AnswerReady !

accept XR (inval: in item; outval: out item) do

if Xwaiting or XMwaiting then

begin

outval := ansval;

ansval := inval;

AnswerReady := true;

end;

else

outval := inval

end; - - accept XR

end; - - select

end. - - channel

Since XR (real-time exchange) is a \real-time" operation, we might want

the XR calls to have higher priority than the X and XM calls. Cell provides a

mechanism for such priorities: One can label accept clauses and await statements

and specify a partial order on these clauses. When a select statement has several

such choices, it chooses one of the lowest in the partial order. Syntactically, the

order statement speci�es a partial order on the accept and await statements.

Thus, the program

order (L1 < L2; L1 < L3; L2 < L4; L3 < L4);

select

L1: accept : : : ;

or

L2: accept : : :

L3: await : : : ;

L4: await : : : ;

end; - - select

speci�es that accept clause L1 is to be taken in preference to all others, that

await statement L4 is to be given the lowest priority, and that the system is to

choose arbitrarily between accept clause L2 and await statement L3.

The fourth extension to the conventional select semantics provides that a by

clause in the await statement controls the service order of the elements in the

await sets. The program

var p, q: boolean;
...

268 languages

select

accept

this entry (x, y: in integer : : :);
...

await (p and q) by (3*x + 4*y);
...

orders the elements in the await set by the lowest value of 3*x+4*y. This use of

numeric priorities parallels SR. In SR, priorities are associated with the accept

clauses; in Cell they are associated with the await set.

Termination and calls Cells are created by the declaration and initiation of

cell variables. Hence, Cell supports dynamic process creation. A cell terminates

when (1) it reaches the end of its program, and (2) all the cells it created (its

children) have terminated. Cells cannot force the termination of their children.

When a cell with out parameters terminates, the values of its out parameters

are returned to its parent.

It is often useful to treat dependent cells not as concurrent processes but as

procedures. A cell that executes

call <cell-identi�er> (<actual parameters>)

both initiates the cell <cell-identi�er> and waits for its termination.

Perspective

SR and Cell are both proposals that extend Ada's synchronization mechanisms.

These extensions signi�cantly reduce the di�culty of programming many com-

mon resource control problems. Nevertheless, each system has several important

de�ciencies.

SR's approach to distributed computing has three distinguishing features:

(1) SR mixes shared storage and request-based communication, (2) SR has both

synchronous and asynchronous requests, and (3) SR uses numeric priorities for

scheduling. Each of these ideas is a positive contribution to controlling distribu-

tion. Our quarrel is with the failure to carry these ideas to their logical conclu-

sion. What is missing from SR is a recursive Gestalt. Processes are to replace

procedures, but processes cannot communicate with themselves. And the �xed,

two-level hierarchy of resources and processes is a structure that cannot be em-

bedded in other program segments. We present a few examples to illustrate these

limitations.

Memory sharing SR processes can share storage with processes within their

own resource. No other storage sharing is allowed. This structure mimics a phys-

ical system of shared-memory multiprocessors communicating over distributed

synchronizing resources and cell 269

connections. Figure 16-4 shows one such architecture. However, we can imag-

ine alternative architectures. One simple example of such a system is a ring of

processors separated by two-port memories (Figure 16-5). In this architecture,

memory sharing cannot be described simply in terms of sharing processes within

resources. Each processor shares memory with two other processors, but these

processors do not share memory with each other.

SR neglects other opportunities for sharing. For example, processes in a

resource can share memory but cannot share entries. Shared entries would elimi-

nate the need for many programmer-created bu�ers. If there are several printers,

then processes could send their printing requests to the printing resource instead

of to particular printers. Each printer could get the next request by pulling an

item from this entry. Thus, shared entry queues would, without any additional

mechanism, turn every resource into a producer-consumer bu�er.

Process names SR recognizes that providing both synchronous and asyn-

chronous communication facilitates programming. However, useful asynchronous

message-based communication requires that processes have names that can be

included in messages. The original SR de�nition [Andrews 81a] omitted such

names. The full implementation of SR [Andrews 82] recti�es this de�ciency and

treats process names as a distinct data type.

Figure 16-4 The archetypical SR architecture.

270 languages

Figure 16-5 Two port memory processor ring.

Scheduling SR allows process guards and synchronization expressions to ex-

amine incoming messages. However, it requires scheduling constraints to be de-

scribed solely by priorities (and messages deferred by guards). SR assumes that

scheduling algorithms can be expressed by a single number. One can imagine

stronger mechanisms that would allow comparison of pending messages. SR uses

numeric priorities because they are easy to compute and provide a quick deter-

mination of the next message.* Of course, some problems do not require such

a priority mechanism and can simply omit priority clauses. Other programs are

clearly simpli�ed by its existence. But numeric priorities are not the ultimate

in scheduling description. Presumably, some problems can pro�tably use mech-

anisms beyond numbers.

Additionally, SR neglects including key communication information in its

priority mechanism. SR requests are anonymous. The receiver of a call does not

know its originator. And though SR provides both synchronous and asynchronous

calling mechanisms, an SR process cannot determine how it was called. These

attributes are fertile material for priority mechanisms. A process might want to

provide better service to a certain class of users or to respond more quickly to

requests when the caller is waiting (synchronous requests). An SR program is

* Numeric priorities allow determination of the next message by a simple linear search of the

message queue. This search requires storing only the lowest priority value (and a pointer to the

message with that value). Partial-order mechanisms require more search and more structure.

synchronizing resources and cell 271

forced to encode these concepts in the message where they are subject to error

and abuse.

Cell Cell contributes three key ideas: explicit process objects, delay queues in

accept statements, and partial ordering of choices. Cell has borrowed the foun-

dation for each of these ideas and cleverly extended the concepts. However, Cell

also fails to carry these ideas to their logical conclusions.

More than most languages in the imperative, systems tradition, Cell recog-

nizes the desirability of processes as objects|structures that can be created,

destroyed, named, and used. Cell's implementation of this idea is almost com-

plete. The major omission is the dynamic creation of cells outside the recursive

process|the equivalent of the new function in Pascal. What is novel and inter-

esting is the passing of output parameters on cell termination.

Process initialization parameters (or their equivalent) are a familiar concept.

In addition to initialization, terminating cells return parameters to their callers.

Thus, the program

type this cell = cell (y: out integer) : : : ;

var

j : integer;

c : this cell;
...

init c(j)
...

j := 5;

write(j);
...

assigns the value computed by terminating cell c to variable j sometime after cell

c terminates. This happens asynchronously with respect to the creating process.

That is, there is no way of telling when it will happen. Thus, one cannot be sure

that the write statement will actually print 5. In practice, one can avoid such

pitfalls by not assigning to output variables. However, designing such traps into

the language is a mistake.

The await statement integrates the monitor delay queue with the indeter-

minacy of the Ada select statement. Cell wisely recognizes that program state

is useful for synchronization and scheduling. We object to Cell's limitation of

reviving awaiting requests only at the point of the await statement. We propose

that an explicit queue of awaiting callers (like the entry queue) that could be

accessed at any point in the program would provide a more exible scheduling

structure. (Of course, the various SR and Cell proposals for queue ordering can

be retained.) We contrast the Cell program for an Exchange Functions channel

that requires continuation (as given above) with the same program that treats

272 languages

await queues as entries. In this program, we name the await queue and explicitly

mention its parameters.

type channel = cell; - - no input or output parameters

var

barXMaccept : boolean; - - The last accept was an XM.

barXRaccept : boolean; - - The last accept was an XR.

ansval : item;

begin

while true do

begin

barXMaccept := false;

barXRaccept := false;

select

accept X (inval: in item; outval: out item) do

ansval := inval;

await MatchCall (inval, outval);

- - Wait in the MatchCall queue.

end; - - accept X

or

accept XM (inval: in item; outval: out item) do

barXMaccept := true;

ansval := inval;

await MatchCall (inval,outval);

end; - - accept XM

or

accept XR (inval: in item; outval: out item) do

barXRaccept := true;

outval := inval;

end; - - accept XR

end; - - select

if not barXRaccept then

begin

select

accept X (inval: in item; outval: out item) do

outval := ansval;

ansval := inval;

end; - - accept X

or

when not barXMaccept !

accept XM (inval: in item; outval: out item) do

outval := ansval;

synchronizing resources and cell 273

ansval := inval;

end; - - accept XM

or

accept XR (inval: in item; outval: out item) do

outval := ansval;

ansval := inval;

end; - - accept XR

end; - - select

accept MatchCall (inval: in item; outval: out item) do

- - treating the MatchCall await queue as an entry

outval := ansval;

end;

end; - - not an XR

end; - - while loop

end; - - end cell de�nition

This program implements a three-step algorithm: Receive a call. If that call

is an XR, return its value. Otherwise receive a matching call, respond to it, and

then complete the �rst call.

The partial-order priority of the select statement is a clever idea. Conditional

statements originally had one determinate form: if : : : then : : : else : : : if : : :

then : : : else : : : . The programmer speci�ed an order for the evaluation of the

conditions; the program followed that order. Guarded commands, a later inven-

tion, took the opposite approach: the programmer does not specify any order.

The partial-order priority of the Cell select statement encompasses both of these

approaches and all points between. Cell requires that this partial order be �xed

at compilation. Programming, compilers, and computer architecture being what

they are, this is perhaps an inevitable decision. Certainly a system that allows

the priorities to shift based on program experience would be more exible. Such

dynamic rearrangement allows the programmer to easily specify priorities such

as \select the entry queue that is the busiest." We also regret that Cell limits

partial-order guards to select statements. They are an interesting programming

structure for languages in general.

PROBLEMS

16-1 Does SR need both synchronous and asynchronous communication mechanisms? Argue

whether synchronous communication can be modeled by asynchronous communication, and

conversely, if asynchronous communication can be modeled by synchronous communication.

16-2 The SR readers-writers program is only weakly fair, even with respect to the values

presented on the timestamps. Why is it not strongly fair?

16-3 Reprogram the readers-writers problem to allow a few readers that arrive after a wait-

ing writer to access the resource on the current read cycle. What criteria can be used to decide

what \a few" is? Be sure that your solution precludes starvation.

274 languages

16-4 Rewrite the readers-writers program to dynamically adjust the service levels of readers

and writers based on the historic access patterns to the resource.

16-5 Rewrite the reader-writers controller to use another secretary process to receive exit

messages, instead of routing these messages to the primary guardian process.

16-6 Arrange the sensors and controller of the tra�c light problem to permit all communi-

cation to be through shared memory. Your program must keep every controller in a di�erent

resource.

16-7 The tra�c light program speci�cally tests a large boolean expression to decide what

to do. The text hints that an arithmetic expression of the basis variables can be used instead.

Rewrite the tra�c light program to control the signals by a priority index for each direction.

Make sure your program has the same behavior as the original.

16-8 Modify the tra�c light program to allow special routing for emergency vehicles. Design

a protocol for communication between intersections and a technique for describing the intended

path for a �re engine or ambulance. Arrange for green lights all along the emergency path well

before the arrival and during the passage of the emergency vehicle.

16-9 Are output parameters in Cell really necessary or can they be imitated by some more

conventional mechanism? How could a program obtain the same e�ect?

16-10 Using the from clause, write the Cell controller for a printer that can be initiated by

any process but serves that process only until the initiating process's job is completed.

16-11 Write the Cell program for an elevator-algorithm disk scheduler. This scheduler treats

the disk head as an elevator, moving it from the edge to the center and back again, always

trying to serve calls in its path. Calls to this scheduler specify the track to be read; the scheduler

returns the data on that track. The elevator algorithm seeks to minimize disk head movement

when there are many simultaneous calls on the disk.

16-12 Write the SR program for the elevator-algorithm disk scheduler.

16-13 Contrast the Cell and SR disk schedulers.

16-14 Cell (like SR and Ada) has an attribute of each entry that is a count of the number of

pending invocations of that entry. Cell does not have a corresponding system-de�ned count of

pending calls on await statements. Why not?

16-15 Rewrite the SR time-stamped readers-writers program in Cell. Instead of a separate

time stamp process, delay callers in an await statement in a single resource.

16-16 Contrast the await statement in Cell with queues in Concurrent Pascal.

REFERENCES

[Andrews 81a] Andrews, G. R., \Synchronizing Resources," ACM Trans. Program. Lang.

Syst., vol. 3, no. 4 (October 1981), pp. 405{430. This paper describes SR. Besides detailing

the language and providing a few sample programs, it includes comments on implementing

SR and on proof rules for SR.

[Andrews 81b] Andrews, G. R., \SR: A Language for Distributed Programming," Technical

Report TR81-14, Computer Science Department, University of Arizona, Tucson, Arizona

(October 1981). This is the SR manual.

[Andrews 82] Andrews, G. R., \The Distributed Programming Language SR|Mechanisms,

Design and Implementation," Softw. Pract. Exper., vol. 12, no. 8 (1982), pp. 719{753.

Andrews presents both an overview of the SR language and a discussion of the implemen-

tation issues involved in creating an SR system.

[Kessels 77] Kessels, J.L.W., \An Alternative to Event Queues for Synchronization in Mon-

itors," CACM, vol. 20, no. 7 (July 1977), pp. 500{503. Kessels proposes a wait statement

synchronizing resources and cell 275

for monitors. Silberschatz drew his inspiration for the await statement in Cell from this

paper.

[Silberschatz 80] Silberschatz, A., \Cell: A Distributed Computing Modularization Con-

cept," Technical Report 155, Department of Computer Science, The University of Texas,

Austin, Texas (September 1980). (To appear March 1984, IEEE Trans. Softw. Eng.). This

is a concise description of Cell.

